Author's Solution for 01.04.2023 Cash Award Math Rider

Given :

AE, AR \& AM are respectively the altitude, angle bisector and median of $\triangle \mathrm{ABD}$ and $\mathrm{CF}, \mathrm{CS} \& \mathrm{CM}$ are respectively the altitude, angle bisector \& median of $\triangle \mathrm{CBD} . \mathrm{AE}=\mathrm{CF}$.

To Prove: $\left(M S^{2}-M R^{2}\right)=\left(F S^{2}-E R^{2}\right)$
Before solving the problem, let us prove two results, (regarding Altitude and Angle-bisector) used in the solution of the problem. (See the box below)

1. Result about Altitude:

An altitude of a triangle is always equal to the product of the sides of its vertex divided by the diameter of its circumcircle. (See the picture below)

Given :

In $\triangle A B C, A D$ is the altitude from vertex A.
AE is the diameter of its circumcircle.
To prove:
$\mathrm{AD}=\frac{A B \times A C}{A E}=\frac{A B \times A C}{\text { Diameter }}$
Proof:
Join BE.
Now, $\angle A D C=\angle A B E=90^{\circ}(\because A E$ is diameter $)$

$\angle A C D=\angle A E B$ (Angles in same segment)
$\therefore \triangle A D C \sim \triangle A B E$
$\Rightarrow \frac{A D}{A B}=\frac{A C}{A E}$
$\Rightarrow A D=\frac{A B \times A C}{A E}=\frac{A B \times A C}{\text { Diameter }}$

2. Result about Angle -Bisector:

The square of an Angle bisector of a triangle is always equal to the difference between product of the sides of its vertex and the product of the line segments of the opposite side created by it. (See the picture below)

Given: In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the bisector of $\angle B A C$.
B
D
C
To Prove: $A D^{2}=A B \times A C-B D \times D C$

Construction:

Draw the circumcircle of $\triangle \mathrm{ABC}$
Produce AD to meet the circumcircle at E. Join BE.

Proof:

$$
\angle A E B=\angle A C D \text { (Angles in same segment })
$$

$\angle B A E=\angle C A D$ (Given)
$\therefore \triangle A B E \sim \triangle A D C$
$\Rightarrow \frac{A B}{A D}=\frac{A E}{A C}$

$\Rightarrow A E \times A D=A B \times A C$
$\mathrm{AD}(\mathrm{AD}+\mathrm{DE})=\mathrm{AB} \times \mathrm{AC}$
$\Rightarrow A D^{2}=A B \times A C-A D \times D E$
$\Rightarrow A D^{2}=A B \times A C-B D \times D C \quad[\because A D \times D E=B D \times D C]$

As per the result (1) above (Result about altitude),(See box above)
$A E=\frac{A B \times A D}{\text { Diameter }}$
And CF $=\frac{C B \times C D}{\text { Diameter }}$
$A E=C F$ (Given)
(1), (2) \& (3) $\rightarrow \mathrm{AB} \times \mathrm{AD}=\mathrm{CB} \times \mathrm{CD}$

As per result (2) above (Result about Angle bisector), (See box above)
$A R^{2}=\mathrm{AB} \times \mathrm{AD}-\mathrm{BR} \times \mathrm{RD}$
And $C S^{2}=C B \times C D-B S \times S D$
(6) $-(5) \Longrightarrow$
$C S^{2}-A R^{2}=(\mathrm{CB} \times \mathrm{CD}-\mathrm{BS} \times \mathrm{SD})-(\mathrm{AB} \times \mathrm{AD}-\mathrm{BR} \times \mathrm{RD})$
$\left(C F^{2}+F S^{2}\right)-\left(A E^{2}+E R^{2}\right)=\mathrm{CB} \times \mathrm{CD}-\mathrm{BS} \times \mathrm{SD}-\mathrm{AB} \times \mathrm{AD}+\mathrm{BR} \times \mathrm{RD}$
$A E^{2}+F S^{2}-A E^{2}-E R^{2}=\mathrm{BR} \times \mathrm{RD}-\mathrm{BS} \times \mathrm{SD}$
[given $\mathrm{AE}=\mathrm{CF}$ and $\mathrm{AB} \times \mathrm{AD}=\mathrm{CB} \times \mathrm{CD}$ vide (4) above]
$F S^{2}-E R^{2}=(\mathrm{BM}+\mathrm{MR}) \times(\mathrm{BM}-\mathrm{MR})-(\mathrm{BM}-\mathrm{MS}) \times(\mathrm{BM}+\mathrm{MS}) \quad$ [as M is the midpoint of BD$]$
$F S^{2}-E R^{2}=\left(B M^{2}-M R^{2}\right)-\left(B M^{2}-M S^{2}\right)$
$F S^{2}-E R^{2}=M S^{2}-M R^{2}$

Solution given by
 DR. M. RAJA CLIMAX

Founder Chairman
CEOA Group of Institutions
Madurai, Tamil Nadu.

