Author's Solution for 01.04.2023 Cash Award Math Rider

<u>Given :</u>

AE, AR & AM are respectively the altitude, angle bisector

and median of ΔABD and CF, CS & CM are

respectively the altitude, angle bisector & median

of \triangle CBD. AE = CF.

<u>To Prove</u>: $(MS^2 - MR^2) = (FS^2 - ER^2)$

Before solving the problem, let us prove two results,

(regarding Altitude and Angle-bisector) used in the solution

of the problem. (See the box below)

1. Result about Altitude:

An altitude of a triangle is always equal to the product of the sides of its vertex divided by the diameter of its circumcircle. (See the picture below)

Given :

In \triangle ABC, AD is the altitude from vertex A.

AE is the diameter of its circumcircle.

To prove:

$$AD = \frac{AB \times AC}{AE} = \frac{AB \times AC}{Diameter}$$

Proof:

Join BE.

Now, $\angle ADC = \angle ABE = 90^{\circ}$ (: *AE is diameter*)

 $\angle ACD = \angle AEB$ (Angles in same segment)

 $\therefore \Delta ADC \sim \Delta ABE$

$$\Rightarrow \frac{AD}{AB} = \frac{AC}{AE}$$
$$\Rightarrow AD = \frac{AB \times AC}{AE} = \frac{AB \times AC}{Diameter} ----- Proved$$

As per the result (1) above (Result about altitude), (See box above)

 $AE = \frac{AB \times AD}{Diameter} -----(1)$ And $CF = \frac{CB \times CD}{Diameter} -----(2)$ AE = CF (Given) ------(3)(1), (2) & (3) \rightarrow AB x AD = CB x CD ------(4)
As per result (2) above (Result about Angle bisector), (See box above) $AR^2 = AB x AD - BR x RD ------(5)$

And $CS^2 = CB \times CD - BS \times SD$ -----(6)

 $(6) - (5) \Rightarrow$ $CS^{2} - AR^{2} = (CB \times CD - BS \times SD) - (AB \times AD - BR \times RD)$ $(CF^{2} + FS^{2}) - (AE^{2} + ER^{2}) = CB \times CD - BS \times SD - AB \times AD + BR \times RD$ $AE^{2} + FS^{2} - AE^{2} - ER^{2} = BR \times RD - BS \times SD$ [given AE=CF and AB x AD = CB x CD vide (4) above] $FS^{2} - ER^{2} = (BM + MR) \times (BM - MR) - (BM - MS) \times (BM + MS)$ [as M is the midpoint of BD] $FS^{2} - ER^{2} = (BM^{2} - MR^{2}) - (BM^{2} - MS^{2})$ $FS^{2} - ER^{2} = MS^{2} - MR^{2} - MR^{2} - MR^{2}$

Solution given by DR. M. RAJA CLIMAX Founder Chairman CEOA Group of Institutions Madurai, Tamil Nadu.